

An Introduction to
Problem Solving & Programming

™

This page intentionally left blank

Boston Columbus Indianapolis New York San Francisco Upper Saddle River
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

An Introduction to
Problem Solving & Programming

Walter Savitch
University of California, San Diego

Contributor

Kenrick Mock
University of Alaska Anchorage

7th edition™

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook
appear on appropriate page within text.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other coun-
tries. Screen shots and icons reprinted with permission from the Microsoft Corporation. This book is not spon-
sored or endorsed by or affiliated with the Microsoft Corporation.

Copyright © 2015, 2012, 2009, 2005, 2004, 2001 Pearson Education, Inc., 1 Lake Street, Upper Saddle River, New
Jersey, 07458. All rights reserved. Manufactured in the United States of America. This publication is protected by
Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a
retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. To obtain permission(s) to use material from this work, please submit a written request to Pearson Educa-
tion, Inc., Permissions Department, 1 Lake Street, Upper Saddle River, New Jersey, 07458

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Savitch, Walter J., 1943-
 Java : an introduction to problem solving and programming / Walter Savitch. -- 7th edition.
 pages cm
 Includes index.
 ISBN-13: 978-0-13-376626-4 (alkaline paper)
 ISBN-10: 0-13-376626-8 (alkaline paper)
1. Java (Computer program language) I. Title.
 QA76.73.J38S27 2014
 005.13’3--dc23
 2013050398

10 9 8 7 6 5 4 3 2 1—CW—15 14 13 12 11

 ISBN 10: 0-13-376626-8
 ISBN 13: 978-0-13-376626-4

Editorial Director: Marcia Horton
Acquisitions Editor: Matt Goldstein
Program Manager: Kayla Smith-Tarbox
Editorial Assistant: Kelsey Loanes
Marketing Coordinator: Kathryn Ferranti
Production Director: Erin Gregg
Managing Editor: Scott Disanno
Production Project Manager: Heather McNally
Senior Operations Supervisor: Vincent Scelta
Operations Specialist: Linda Sager
Art Director: Kristine Carney
Cover Designer: Joyce Wells
Manager, Rights and Permissions: Michael Joyce
Media Director: Daniel Sandin
Full-Service Project Management: Hardik Popli, Cenveo® Publisher Services
Composition: Cenveo Publisher Services
Interior Printer/Bindery: Courier/Westford
Cover Printer: Lehigh-Phoenix Color/Hagerstown

vv

Preface for Instructors

Welcome to the seventh edition of Java: An Introduction to Problem Solving &
Programming. This book is designed for a first course in programming and
computer science. It covers programming techniques, as well as the basics of
the Java programming language. It is suitable for courses as short as one quar-
ter or as long as a full academic year. No previous programming experience is
required, nor is any mathematics, other than a little high school algebra. The
book can also be used for a course designed to teach Java to students who have
already had another programming course, in which case the first few chapters
can be assigned as outside reading.

Changes in This Edition

The following list highlights how this seventh edition differs from the sixth
edition:

■ End-of-chapter programs are now split into Practice Programs and
Programming Projects. Practice Programs require a direct application
of concepts presented in the chapter and solutions are usually short.
Practice Programs are appropriate for laboratory exercises. Programming
Projects require additional problem solving and solutions are generally
longer than Practice Programs. Programming Projects are appropriate for
homework problems.

■ An introduction to functional programming with Java 8’s lambda expres-
sions.

■ Additional material on secure programming (e.g., overflow, array out of
bounds), introduction to Java 2DTM API, networking, and the URL class as
further examples of polymorphism in the context of streams.

■ Twenty-one new Practice Programs and thirteen new Programming
Projects.

■ Ten new VideoNotes for a total of seventy two VideoNotes. These VideoNotes
walk students through the process of both problem solving and coding
to help reinforce key programming concepts. An icon appears in the
margin of the book when a VideoNote is available regarding the topic
covered in the text.

vi Preface for Instructors

Latest Java Coverage

All of the code in this book has been tested using a pre-release version of
Oracle’s Java SE Development Kit (JDK), version 8. Any imported classes are
standard and in the Java Class Library that is part of Java. No additional classes
or specialized libraries are needed.

Flexibility

If you are an instructor, this book adapts to the way you teach, rather than
making you adapt to the book. It does not tightly prescribe the sequence
in which your course must cover topics. You can easily change the order
in which you teach many chapters and sections. The particulars involved
in rearranging material are explained in the dependency chart that follows
this preface and in more detail in the “Prerequisites” section at the start of
each chapter.

Early Graphics

Graphics supplement sections end each of the first ten chapters. This gives you
the option of covering graphics and GUI programming from the start of your
course. The graphics supplement sections emphasize applets but also cover
GUIs built using the JFrame class. Any time after Chapter 8, you can move on
to the main chapters on GUI programming (Chapters 13 through 15), which
are now on the Web. Alternatively, you can continue through Chapter 10 with
a mix of graphics and more traditional programming. Instructors who prefer
to postpone the coverage of graphics can postpone or skip the graphics supple-
ment sections.

Coverage of Problem-Solving and Programming Techniques

This book is designed to teach students basic problem-solving and program-
ming techniques and is not simply a book about Java syntax. It contains
numerous case studies, programming examples, and programming tips. In
addition, many sections explain important problem-solving and program-
ming techniques, such as loop design techniques, debugging techniques, style
techniques, abstract data types, and basic object-oriented programming tech-
niques, including UML, event-driven programming, and generic programming
using type parameters.

Early Introduction to Classes

Any course that really teaches Java must teach classes early, since everything
in Java involves classes. A Java program is a class. The data type for strings of
characters is a class. Even the behavior of the equals operator (==) depends
on whether it is comparing objects from classes or simpler data items. Classes
cannot be avoided, except by means of absurdly long and complicated “magic

 Preface for Instructors vii

formulas.” This book introduces classes fairly early. Some exposure to using
classes is given in Chapters 1 and 2. Chapter 5 covers how to define classes.
All of the basic information about classes, including inheritance, is presented
by the end of Chapter 8 (even if you omit Chapter 7). However, some topics
regarding classes, including inheritance, can be postponed until later in the
course.

Although this book introduces classes early, it does not neglect traditional
programming techniques, such as top-down design and loop design tech-
niques. These older topics may no longer be glamorous, but they are informa-
tion that all beginning students need.

Generic Programming

Students are introduced to type parameters when they cover lists in Chapter
12. The class ArrayList is presented as an example of how to use a class that
has a type parameter. Students are then shown how to define their own classes
that include a type parameter.

Language Details and Sample Code

This book teaches programming technique, rather than simply the Java
language. However, neither students nor instructors would be satisfied
with an introductory programming course that did not also teach the
programming language. Until you calm students’ fears about language
details, it is often impossible to focus their attention on bigger issues.
For this reason, the book gives complete explanations of Java language
features and lots of sample code. Programs are presented in their entirety,
along with sample input and output. In many cases, in addition to the
complete examples in the text, extra complete examples are available over
the Internet.

Self-Test Questions

Self-test questions are spread throughout each chapter. These questions have a
wide range of difficulty levels. Some require only a one-word answer, whereas
others require the reader to write an entire, nontrivial program. Complete an-
swers for all the self-test questions, including those requiring full programs, are
given at the end of each chapter.

Exercises and Programming Projects

Completely new exercises appear at the end of each chapter. Since only you,
and not your students, will have access to their answers, these exercises are
suitable for homework. Some could be expanded into programming projects.
However, each chapter also contains other programming projects, several of
which are new to this edition.

viii Preface for Instructors

Support Material

The following support materials are available on the Internet at www
.pearsonhighered.com/irc:

For instructors only:

■ Solutions to most exercises and programming projects
■ PowerPoint slides
■ Lab Manual with associated code.

Instructors should click on the registration link and follow instructions to re-
ceive a password. If you encounter any problems, please contact your local
Pearson Sales Representative. For the name and number of your sales represen-
tative, go to pearsonhighered.com/replocator.

For students:
■ Source code for programs in the book and for extra examples
■ Student lab manual
■ VideoNotes: video solutions to programming examples and exercises.

Visit www.pearsonhighered.com/savitch to access the student resources.

Online Practice and Assessment with MyProgrammingLab

MyProgrammingLab helps students fully grasp the logic, semantics, and syn-
tax of programming. Through practice exercises and immediate, personalized
feedback, MyProgrammingLab improves the programming competence of be-
ginning students who often struggle with the basic concepts and paradigms of
popular high-level programming languages.

A self-study and homework tool, a MyProgrammingLab course consists
of hundreds of small practice problems organized around the structure of this
textbook. For students, the system automatically detects errors in the logic and
syntax of their code submissions and offers targeted hints that enable students
to figure out what went wrong—and why. For instructors, a comprehensive
gradebook tracks correct and incorrect answers and stores the code inputted by
students for review.

MyProgrammingLab is offered to users of this book in partnership with
Turing’s Craft, the makers of the CodeLab interactive programming exer-
cise system. For a full demonstration, to see feedback from instructors and
students, or to get started using MyProgrammingLab in your course, visit
www.myprogramminglab.com.

VideoNotes

VideoNotes are designed for teaching students key programming concepts
and techniques. These short step-by-step videos demonstrate how to solve

VideoNote

 Preface for Instructors ix

problems from design through coding. VideoNotes allow for self-placed in-
struction with easy navigation including the ability to select, play, rewind, fast-
forward, and stop within each VideoNote exercise.

Margin icons in your textbook let you know when a VideoNote video is
available for a particular concept or homework problem.

Integrated Development Environment Resource Kits

Professors who adopt this text can order it for students with a kit containing
seven popular Java IDEs (the most recent JDK from Oracle, Eclipse, NetBeans,
jGRASP, DrJava, BlueJ, and TextPad). The kit also includes access to a Web
site containing written and video tutorials for getting started in each IDE. For
ordering information, please contact your campus Pearson Education repre-
sentative or visit www.pearsonhighered.com.

Contact Us

Your comments, suggestions, questions, and corrections are always welcome.
Please e-mail them to savitch.programming.java@gmail.com.

Preface for Students

This book is designed to teach you the Java programming language and, even
more importantly, to teach you basic programming techniques. It requires
no previous programming experience and no mathematics other than some
simple high school algebra. However, to get the full benefit of the book, you
should have Java available on your computer, so that you can practice with the
examples and techniques given. The latest version of Java is preferable, but a
version as early as 5 will do.

If You Have Programmed Before

You need no previous programming experience to use this book. It was
designed for beginners. If you happen to have had experience with some
other programming language, do not assume that Java is the same as the
programming language(s) you are accustomed to using. All languages are
different, and the differences, even if small, are large enough to give you
problems. Browse the first four chapters, reading at least the Recap portions.
By the time you reach Chapter 5, it would be best to read the entire chapter.

If you have programmed before in either C or C++, the transition to Java
can be both comfortable and troublesome. At first glance, Java may seem
almost the same as C or C++. However, Java is very different from these lan-
guages, and you need to be aware of the differences. Appendix 6 compares Java
and C++ to help you see what the differences are.

Obtaining a Copy of Java

Appendix 1 provides links to sites for downloading Java compilers and pro-
gramming environments. For beginners, we recommend Oracle’s Java JDK for
your Java compiler and related software and TextPad as a simple editor envi-
ronment for writing Java code. When downloading the Java JDK, be sure to
obtain the latest version available.

Support Materials for Students
■ Source code for programs in the book and for extra examples
■ Student lab manual
■ VideoNotes: video solutions to programming examples and exercises.

Visit www.pearsonhighered.com/savitch to access the student resources.

x

 Preface for students xi

Learning Aids

Each chapter contains several features to help you learn the material:

■ The opening overview includes a brief table of contents, chapter objectives
and prerequisites, and a paragraph or two about what you will study.

■ Recaps concisely summarize major aspects of Java syntax and other impor-
tant concepts.

■ FAQs, or “frequently asked questions,” answer questions that other students
have asked.

■ Remembers highlight important ideas you should keep in mind.
■ Programming Tips suggest ways to improve your programming skills.
■ Gotchas identify potential mistakes you could make—and should avoid—

while programming.
■ Asides provide short commentaries on relevant issues.
■ Self-Test Questions test your knowledge throughout, with answers given

at the end of each chapter. One of the best ways to practice what you are
learning is to do the self-test questions before you look at the answers.

■ A summary of important concepts appears at the end of each chapter.

Online Practice with MyProgrammingLab

A self-study and practice tool, a MyProgrammingLab course consists of
hundreds of small practice problems organized around the structure of this
textbook. The system automatically detects errors in the logic and syntax of
your code submissions and offers targeted hints that enable you to figure
out what went wrong—and why. Visit www.myprogramminglab.com for
more information.

VideoNotes

These short step-by-step videos demonstrate how to solve problems from design
through coding. VideoNotes allow for self-placed instruction with easy navigation
including the ability to select, play, rewind, fast-forward, and stop within each
VideoNote exercise. Margin icons in your textbook let you know when a VideoNote
video is available for a particular concept or homework problem.

This Text Is Also a Reference Book

In addition to using this book as a textbook, you can and should use it as a
reference. When you need to check a point that you have forgotten or that you
hear mentioned by somebody but have not yet learned yourself, just look in
the index. Many index entries give a page number for a “recap.” Turn to that
page. It will contain a short, highlighted entry giving all the essential points

VideoNote

xii Preface for students

on that topic. You can do this to check details of the Java language as well as
details on programming techniques.

Recap sections in every chapter give you a quick summary of the main
points in that chapter. Also, a summary of important concepts appears at the
end of each chapter. You can use these features to review the chapter or to
check details of the Java language.

Through the power of practice and immediate personalized

feedback, MyProgrammingLab improves your performance.

Learn more at www.myprogramminglab.com

get with the programming

To improving results

This page intentionally left blank

Acknowledgments

We thank the many people who have made this seventh edition possible, in-
cluding everyone who has contributed to the first six editions. We begin by
recognizing and thanking the people involved in the development of this new
edition. The comments and suggestions of the following reviewers were in-
valuable and are greatly appreciated. In alphabetical order, they are:

Christopher Crick—Oklahoma State University
Christopher Plaue—University of Georgia
Frank Moore—University of Alaska Anchorage
Greg Gagne—Westminster College
Helen Hu—Westminster College
Paul Bladek—Edmonds Community College, Washington
Paul LaFollette—Temple University
Pei Wang—Temple University
Richard Cassoni—Palomar College
Walter Pistone—Palomar College

Many other reviewers took the time to read drafts of earlier editions of the book.
Their advice continues to benefit this new edition. Thank you once again to:

Adel Elmaghraby—University of Louisville
Alan Saleski—Loyola University Chicago
Anthony Larrain—DePaul University
Arijit Sengupta—Raj Soin College of Business, Wright State University
Asa Ben-Hur—Colorado State University
Ashraful A. Chowdhury—Georgia Perimeter College
Billie Goldstein—Temple University
Blayne Mayfield—Oklahoma State University
Boyd Trolinger—Butte College
Charles Hoot—Oklahoma City University
Chris Hoffmann—University of Massachusetts, Amherst
Dan Adrian German—Indiana University
Dennis Brylow—Marquette University
Dolly Samson—Hawaii Pacific University
Donald E. Smith—Rutgers University
Drew McDermott—Yale University
Ed Gellenbeck—Central Washington University
Faye Tadayon-Navabi—Arizona State University
Gerald Baumgartner—Louisiana State University
Gerald H. Meyer—LaGuardia Community College
Gobi Gopinath—Suffolk County Community College
Gopal Gupta—University of Texas, Dallas
H. E. Dunsmore—Purdue University, Lafayette
Helen H. Hu—Westminster College
Howard Straubing—Boston College
James Roberts—Carnegie Mellon University xv

xvi acknowledgments

Jim Buffenbarger—Boise State University
Joan Boone—University of North Carolina at Chapel Hill
John Motil—California State University, Northridge
Ken Slonneger—University of Iowa
Laird Dornan—Sun Microsystems, Inc.
Le Gruenwald—University of Oklahoma
Lily Hou—Carnegie Mellon University
Liuba Shrira—Brandeis University
Martin Chetlen—Moorpark College
Mary Elaine Califf—Illinois State University
Michele Kleckner—Elon University
Michael Clancy—University of California, Berkeley
Michael Litman—Western Illinois University
Michael Long—California State University
Michael Olan—Richard Stockton College of New Jersey
Michal Young—University of Oregon
Nan C. Schaller—Rochester Institute of Technology
Peter Spoerri—Fairfield University
Ping-Chu Chu—Fayetteville State University
Prasun Dewan—University of North Carolina, Chapel Hill
Ricci Heishman—North Virginia Community College
Richard Whitehouse—Arizona State University
Richard A. Johnson—Missouri State University
Richard Ord—University of California, San Diego
Robert Herrmann—Sun Microsystems, Inc., Java Soft
Robert Holloway—University of Wisconsin, Madison
Rob Kelly—State University of New York at Stony Brook
Robert P. Burton—Brigham Young University
Ryan Shoemaker—Sun Microsystems, Inc.
Stan Kwasny—Washington University
Stephen F. Weiss—University of North Carolina, Chapel Hill
Steven Cater—Kettering University
Subramanian Vijayarangam—University of Massachusetts, Lowell
Tammy VanDeGrift—University of Portland
Thomas Cortina—Carnegie Mellon University
Thomas VanDrunen—Wheaton College
Y. Annie Liu—State University of New York at Stony Brook

We thank Frank Carrano for his revision of the fifth edition of this text-
book. Last but not least, we thank the many students in classes at the Univer-
sity of California, San Diego (UCSD), who were kind enough to help correct
preliminary versions of this text, as well as the instructors who class-tested
these drafts. In particular, we extend a special thanks to Carole McNamee of
California State University, Sacramento, and to Paul Kube of UCSD. These stu-
dent comments and the detailed feedback and class testing of earlier editions
of the book were a tremendous help in shaping the final book.

W. S.
K. M.

Dependency Chart

This chart shows the prerequisites for the chapters in the book. If there is a line between two boxes,
the material in the higher box should be covered before the material in the lower box. Minor varia-
tions to this chart are discussed in the “Prerequisites” section at the start of each chapter. These
variations usually provide more, rather than less, flexibility than what is shown on the chart.

* Note that some sections of these
chapters can be covered sooner.
Those sections are given in this chart.
** These chapters contain sections
that can be covered sooner. See the
chapter’s “Prerequisites” section for
full details.

Chapter 1
Introduction

Chapter 2
Primitive Types, Strings

Chapter 3
Flow of Control: Branching

Chapter 4
Flow of Control: Loops

Section 7.1
Array Basics

Chapter 7*
Arrays

Chapter 11**
Recursion

Chapter 8**
Inheritance

Chapter 13**
Basic Swing

Chapter 14
Applets

Chapter 15
More Swing

Chapter 9*
Exceptions

Section 9.1
Exception Basics

Section 10.1
Overview of Files

Section 10.2
Text Files

Section 10.3
Any Files

Section 10.4
Binary Files

Section 10.5
File I/O for Objects

Section 10.6
Files and Graphics

Chapter 12**
Data Structures, Generics

Chapter 5 and 6
Classes and Methods

xviii

Recaps
Summarize Java syntax and other
important concepts.

Remembers
Highlight important ideas that
students should keep in mind.

Features of This Text
Recap Bytes and Memory Locations

A computer’s main memory is divided into numbered units called
bytes. The number of a byte is called its address. Each byte can hold
eight binary digits, or bits, each of which is either 0 or 1. To store a
piece of data that is too large to fit into a single byte, the computer
uses several adjacent bytes. These adjacent bytes are thought of as a
single, larger memory location whose address is the address of the first
of the adjacent bytes.

ReMeMBeR Syntactic Variables

When you see something in this book like Type, Variable_1, or
Variable_2 used to describe Java syntax, these words do not literally
appear in your Java code. They are syntactic variables, which are a
kind of blank that you fill in with something from the category that
they describe. For example, Type can be replaced by int, double,
char, or any other type name. Variable_1 and Variable_2 can each be
replaced by any variable name.

■ pRogRaMMing Tip Initialize Variables

A variable that has been declared, but that has not yet been given a value by an
assignment statement (or in some other way), is said to be uninitialized. If the
variable is a variable of a class type, it literally has no value. If the variable has a
primitive type, it likely has some default value. However, your program will be
clearer if you explicitly give the variable a value, even if you are simply reassigning the
default value. (The exact details on default values have been known to change and
should not be counted on.)

One easy way to ensure that you do not have an uninitialized variable
is to initialize it within the declaration. Simply combine the declaration and an
assignment statement, as in the following examples:

int count = 0;

double taxRate = 0.075;

char grade = 'A';

int balance = 1000, newBalance;

Note that you can initialize some variables and not initialize others in a declaration.
Sometimes the compiler may complain that you have failed to initialize a

variable. In most cases, that will indeed be true. Occasionally, though, the compiler
is mistaken in giving this advice. However, the compiler will not compile your
program until you convince it that the variable in question is initialized. To make the
compiler happy, initialize the variable when you declare it, even if the variable will
be given another value before it is used for anything. In such cases, you cannot argue
with the compiler. ■

goTcha Hidden Errors

Just because your program compiles and runs without any errors and even
produces reasonable-looking output does not mean that your program is
correct. You should always run your program with some test data that gives
predictable output. To do this, choose some data for which you can compute
the correct results, either by using pencil and paper, by looking up the answer, or
by some other means. Even this testing does not guarantee that your program is
correct, but the more testing you do, the more confidence you can have in your
program. ■

FaQ11 FAQ stands for “frequently asked question.” Why just 0s and 1s?

Computers use 0s and 1s because it is easy to make an electrical device
that has only two stable states. However, when you are programming,
you normally need not be concerned about the encoding of data as 0s
and 1s. You can program as if the computer directly stored numbers,
letters, or strings of characters in memory.
 There is nothing special about calling the states zero and one. We
could just as well use any two names, such as A and B or true and false.
The important thing is that the underlying physical device has two stable
states, such as on and off or high voltage and low voltage. Calling these
two states zero and one is simply a convention, but it’s one that is almost
universally followed.

Programming Tips
Give students helpful advice about
programming in Java.

Gotchas
Identify potential mistakes in
programming that students might
make and should avoid.

FAQs
Provide students answers to frequently
asked questions within the context of
the chapter.

 features of thIs text xix

VideoNotes
Step-by-step video solutions to
programming examples and homework
exercises.

caSe STudy Unit Testing

So far we’ve tested our programs by running them, typing in some input, and
visually checking the results to see if the output is what we expected. This is fine
for small programs but is generally insufficient for large programs. In a large
program there are usually so many combinations of interacting inputs that it
would take too much time to manually verify the correct result for all inputs.
Additionally, it is possible that code changes result in unintended side effects.
For example, a fix for one error might introduce a different error. One way to
attack this problem is to write unit tests. Unit testing is a methodology in which
the programmer tests the correctness of individual units of code. A unit is often a
method but it could be a class or other group of code.

The collection of unit tests becomes the test suite. Each test is generally
automated so that human input is not required. Automation is important
because it is desirable to have tests that run often and quickly. This makes it
possible to run the tests repeatedly, perhaps once a day or every time code is
changed, to make sure that everything is still working. The process of running
tests repeatedly is called regression testing.

Let’s start with a simple test case for the Species class in Listing 5.19. Our
first test might be to verify that the name, initial population, and growth rate
is correctly set in the setSpecies method. We can accomplish this by creating

Writing arithmetic
expressions and statements

VideoNote

Case Studies
Take students from problem statement
to algorithm development to Java code.

Listings
Show students complete programs
with sample output.

LISTING 1.2 Drawing a Happy Face

 import javax.swing.JApplet;

 import java.awt.Graphics;

 public class HappyFace extends JApplet
 {

 public void paint(Graphics canvas)
 {
 canvas.drawOval(100, 50, 200, 200);
 canvas.fillOval(155, 100, 10, 20);
 canvas.fillOval(230, 100, 10, 20);
 canvas.drawArc(150, 160, 100, 50, 180, 180);
 }
 }
Applet Output

xx features of thIs text

Programming Examples
Provide more examples of Java
programs that solve specific problems.

 pRogRaMMing exaMpLe Nested Loops

The body of a loop can contain any sort of statements. In particular, you
can have a loop statement within the body of a larger loop statement. For
example, the program in Listing 4.4 uses a while loop to compute the
average of a list of nonnegative scores. The program asks the user to enter
all the scores followed by a negative sentinel value to mark the end of the
data. This while loop is placed inside a do-while loop so that the user
can repeat the entire process for another exam, and another, until the user
wishes to end the program.

SeLF-TeST QueSTionS

 28. Given the class Species as defined in Listing 5.19, why does the
following program cause an error message?

 public class SpeciesEqualsDemo
 {

 public static void main(String[] args)
 {
 Species s1, s2; s1.
 setSpecies(“Klingon ox”, 10, 15);
 s2.setSpecies(“Klingon ox”, 10, 15);

 if (s1 == s2)
 System.out.println(“Match with ==.”);

 else
 System.out.println(“Do Notmatchwith ==.”)
 }
}

 29. After correcting the program in the previous question, what output does
the program produce?

 30. What is the biggest difference between a parameter of a primitive type
and a parameter of a class type?

 31. Given the class Species, as defined in Listing 5.19, and the class

Self-Test Questions
Provide students with the opportunity
to practice skills learned in the chapter.
Answers at the end of each chapter
give immediate feedback.

Asides
Give short commentary on relevant
topics.

 5.1 Class and Method Definitions 291

methods as well: void methods can have formal parameters, which are handled in
exactly the same way as we just described for methods that return a value.

It is possible, even common, to have more than one formal parameter
in a method definition. In that case, each formal parameter is listed in the
method heading, and each parameter is preceded by a data type. For example,
the following might be the heading of a method definition:

public void doStuff(int n1, int n2, double cost, char code)

Even if more than one parameter has the same
type, each parameter must be preceded by a type
name.

The number of arguments given in a method
invocation must be exactly the same as the
number of formal parameters in the heading of
the method definition. For example, the following
might be an invocation of our hypothetical method
doStuff:

anObject.doStuff(42, 100, 9.99, Z);

As suggested by this example, the correspondence
is one of order and type. The first argument in the
method call is plugged in for the first parameter
in the method definition heading, the second
argument in the method call is plugged in for the
second parameter in the heading of the method
definition, and so forth. Each argument must
match its corresponding parameter in data type,
except for the automatic type conversions that we discussed earlier.

One word of warning: Parameters of a class type behave differently from
parameters of a primitive type. We will discuss parameters of a class type later
in this chapter.

parameter of a primitive type—such as int, double, or char—is a local
variable.

When a method is invoked, each parameter is initialized to the value of the
corresponding argument in the method invocation. This type of substitution
is known as the call-by-value parameter mechanism. The argument in a
method invocation can be a literal constant, such as 2 or
'A'; a variable; or any expression that yields a value of the appropriate
type.

Note that if you use a variable of a primitive type as an argument in a
method invocation, the method invocation cannot change the value of
this argument variable.

Several
parameters are
possible in a
method

Aside Use of the Terms Parameter and
Argument

Our use of the terms parameter and argument
is consistent with common usage. We use
parameter to describe the definition of the
data type and variable inside the header of
a method and argument to describe items
passed into a method when it is invoked.
However, people often use these terms
interchangeably. Some people use the term
parameter both for what we call a formal
parameter and for what we call an argument.
Other people use the term argument both
for what we call a formal parameter and for
what we call an argument. When you see the
term parameter or argument in other books,
you must figure out its exact meaning from
the context.

Arguments must
match parameters
in number, order,
and type

7402_Savitch_Ch05_pp261-372.indd 291 12/20/10 11:49 AM

xxi

Brief Contents

Chapter 1 Introduction to Computers and Java 1

Chapter 2 Basic Computation 47

Chapter 3 Flow of Control: Branching 139

Chapter 4 Flow of Control: Loops 199

Chapter 5 Defining Classes and Methods 267

Chapter 6 More About Objects and Methods 383

Chapter 7 Arrays 491

Chapter 8 Inheritance, Polymorphism, and

Interfaces 589

Chapter 9 Exception Handling 671

Chapter 10 Streams, File I/O, and Networking 739

Chapter 11 Recursion 821

Chapter 12 Dynamic Data Structures and Generics 869

Appendices
1 Getting Java 941

2 Running Applets 942

xxii BrIef contents

3 Protected and Package Modifiers 944

4 The DecimalFormat Class 945

5 javadoc 949

6 Differences Between C++ and Java 952

7 Unicode Character Codes 956

8 Introduction to Java 8 Functional

Programming 957

Index 962

The following chapters and appendices, along with an index to their contents,
are on the book’s Web site:

Chapter 13 Window Interfaces Using Swing

Chapter 14 Applets and HTML

Chapter 15 More Swing

Appendices
9 The Iterator Interface

10 Cloning

11 Java Reserved Keywords

xxiii

Contents

Chapter 1 Introduction to Computers and Java 1

1.1 COMPUTER BASICS 2

Hardware and Memory 3

Programs 6

Programming Languages, Compilers, and Interpreters 7

Java Bytecode 9

Class Loader 11

1.2 A SIP OF JAVA 12

History of the Java Language 12

Applications and Applets 13

A First Java Application Program 14

Writing, Compiling, and Running a Java Program 19

1.3 PROGRAMMING BASICS 21

Object-Oriented Programming 21

Algorithms 25

Testing and Debugging 27

Software Reuse 28

1.4 GRAPHICS SUPPLEMENT 30

A Sample Graphics Applet 30

Size and Position of Figures 32

Drawing Ovals and Circles 34

Drawing Arcs 35

Running an Applet 37

Chapter 2 Basic Computation 47

2.1 VARIABLES AND ExPRESSIONS 48

Variables 49

Data Types 51

xxiv contents

Java Identifiers 53

Assignment Statements 55

Simple Input 58

Simple Screen Output 60

Constants 60

Named Constants 62

Assignment Compatibilities 63

Type Casting 65

Arithmetic Operators 68

Parentheses and Precedence Rules 71

Specialized Assignment Operators 72

Case Study: Vending Machine Change 74

Increment and Decrement Operators 79

More About the Increment and Decrement Operators 80

2.2 THE CLASS String 81

String Constants and Variables 81

Concatenation of Strings 82

String Methods 83

String Processing 85

Escape Characters 88

The Unicode Character Set 89

2.3 KEyBOARD AND SCREEN I/O 91

Screen Output 91

Keyboard Input 94

Other Input Delimiters (Optional) 99

Formatted Output with printf (Optional) 101

2.4 DOCUMENTATION AND STyLE 103

Meaningful Variable Names 103

Comments 104

Indentation 107

Using Named Constants 107

2.5 GRAPHICS SUPPLEMENT 109

Style Rules Applied to a Graphics Applet 110

Creating a Java GUI Application with the JFrame Class 110

Introducing the Class JOptionPane 113

Reading Input as Other Numeric Types 123

 contents xxv

Programming Example: Change-Making Program

 with Windowing I/O 124

Chapter 3 Flow of Control: Branching 139

3.1 THE if-else STATEMENT 140

The Basic if-else Statement 141

Boolean Expressions 148

Comparing Strings 153

Nested if-else Statements 158

Multibranch if-else Statements 160

Programming Example: Assigning Letter Grades 162

Case Study: Body Mass Index 165

The Conditional Operator (Optional) 168

The exit Method 168

3.2 THE TyPE boolean 169

Boolean Variables 170

Precedence Rules 171

Input and Output of Boolean Values 174

3.3 THE switch STATEMENT 176

Enumerations 182

3.4 GRAPHICS SUPPLEMENT 183

Specifying a Drawing Color 184

A Dialog Box for a Yes-or-No Question 187

Chapter 4 Flow of Control: Loops 199

4.1 JAVA LOOP STATEMENTS 200

The while Statement 201

The do-while Statement 204

Programming Example: Bug Infestation 209

Programming Example: Nested Loops 215

The for Statement 217

Declaring Variables within a for Statement 223

Using a Comma in a for Statement (Optional) 224

The for-each Statement 226

xxvi contents

4.2 PROGRAMMING WITH LOOPS 226

The Loop Body 227

Initializing Statements 228

Controlling the Number of Loop Iterations 229

Case Study: Using a Boolean Variable to End a Loop 231

Programming Example: Spending Spree 233

The break Statement and continue Statement in Loops

 (Optional) 236

Loop Bugs 239

Tracing Variables 241

Assertion Checks 243

4.3 GRAPHICS SUPPLEMENT 245

Programming Example: A Multiface Applet 245

The drawstring Method 250

Chapter 5 Defining Classes and Methods 267

5.1 CLASS AND METHOD DEFINITIONS 269

Class Files and Separate Compilation 271

Programming Example: Implementing a Dog Class 271

Instance Variables 272

Methods 275

Defining void Methods 278

Defining Methods That Return a Value 279

Programming Example: First Try at Implementing a Species Class 284

The Keyword this 288

Local Variables 290

Blocks 292

Parameters of a Primitive Type 293

5.2 INFORMATION HIDING AND ENCAPSULATION 299

Information Hiding 300

Precondition and Postcondition Comments 300

The public and private Modifiers 302

Programming Example: A Demonstration of Why Instance

 Variables Should Be Private 305

Programming Example: Another Implementation of a Class

 of Rectangles 306

Accessor Methods and Mutator Methods 308

 contents xxvii

Programming Example: A Purchase Class 312

Methods Calling Methods 316

Encapsulation 322

Automatic Documentation with javadoc 325

UML Class Diagrams 326

5.3 OBJECTS AND REFERENCES 327

Variables of a Class Type 328

Defining an equals Method for a Class 333

Programming Example: A Species Class 337

Boolean-Valued Methods 340

Case Study: Unit Testing 342

Parameters of a Class Type 344

Programming Example: Class-Type Parameters Versus

 Primitive-Type Parameters 348

5.4 GRAPHICS SUPPLEMENT 352

The Graphics Class 352

Programming Example: Multiple Faces, but with a Helping Method 354

The Graphics2D Class and the Java2DTM API 358

The init Method 360

Adding Labels to an Applet 361

Chapter 6 More About Objects and Methods 383

6.1 CONSTRUCTORS 383

Defining Constructors 385

Calling Methods from Constructors 394

Calling a Constructor from Other Constructors (Optional) 397

6.2 STATIC VARIABLES AND STATIC METHODS 399

Static Variables 399

Static Methods 400

Dividing the Task of a main Method into Subtasks 407

Adding a main Method to a Class 408

The Math Class 410

Wrapper Classes 413

6.3 WRITING METHODS 419

Case Study: Formatting Output 419

Decomposition 425

xxviii contents

Addressing Compiler Concerns 426

Testing Methods 428

6.4 OVERLOADING 430

Overloading Basics 430

Overloading and Automatic Type Conversion 433

Overloading and the Return Type 436

Programming Example: A Class for Money 438

6.5 INFORMATION HIDING REVISITED 445

Privacy Leaks 445

6.6 ENUMERATION AS A CLASS 449

6.7 PACKAGES 451

Packages and Importing 452

Package Names and Directories 453

Name Clashes 456

6.8 GRAPHICS SUPPLEMENT 457

Adding Buttons 457

Event-Driven Programming 459

Programming Buttons 459

Programming Example: A Complete Applet with Buttons 463

Adding Icons 466

Changing Visibility 468

Programming Example: An Example of Changing Visibility 468

Chapter 7 Arrays 491

7.1 ARRAy BASICS 493

Creating and Accessing Arrays 494

Array Details 497

The Instance Variable length 500

More About Array Indices 503

Initializing Arrays 506

7.2 ARRAyS IN CLASSES AND METHODS 508

Case Study: Sales Report 508

Indexed Variables as Method Arguments 516

Entire Arrays as Arguments to a Method 519

 contents xxix

Arguments for the Method main 520

Array Assignment and Equality 521

Methods That Return Arrays 524

7.3 PROGRAMMING WITH ARRAyS AND CLASSES 528

Programming Example: A Specialized List Class 528

Partially Filled Arrays 536

7.4 SORTING AND SEARCHING ARRAyS 538

Selection Sort 538

Other Sorting Algorithms 542

Searching an Array 544

7.5 MULTIDIMENSIONAL ARRAyS 545

Multidimensional-Array Basics 546

Multidimensional-Array Parameters and Returned Values 549

Java’s Representation of Multidimensional Arrays 552

Ragged Arrays (Optional) 553

Programming Example: Employee Time Records 555

7.6 GRAPHICS SUPPLEMENT 561

Text Areas and Text Fields 561

Programming Example: A Question-and-Answer Applet 561

The Classes JTextArea and JTextField 564

Drawing Polygons 566

Chapter 8 Inheritance, Polymorphism, and

Interfaces 589

8.1 INHERITANCE BASICS 590

Derived Classes 592

Overriding Method Definitions 596

Overriding Versus Overloading 597

The final Modifier 597

Private Instance Variables and Private Methods of a Base Class 598

UML Inheritance Diagrams 600

8.2 PROGRAMMING WITH INHERITANCE 603

Constructors in Derived Classes 603

The this Method—Again 605

Calling an Overridden Method 605

xxx contents

Programming Example: A Derived Class of a Derived Class 606

Another Way to Define the equals Methods in Undergraduate 611

Type Compatibility 611

The Class Object 616

A Better equals Method 618

8.3 POLyMORPHISM 620

Dynamic Binding and Inheritance 620

Dynamic Binding with toString 623

8.4 INTERFACES AND ABSTRACT CLASSES 625

Class Interfaces 625

Java Interfaces 626

Implementing an Interface 627

An Interface as a Type 629

Extending an Interface 632

Case Study: Character Graphics 633

Case Study: The Comparable Interface 646

Abstract Classes 650

8.5 GRAPHICS SUPPLEMENT 652

The Class JApplet 653

The Class JFrame 653

Window Events and Window Listeners 656

The ActionListener Interface 658

What to Do Next 658

Chapter 9 Exception Handling 671

9.1 BASIC ExCEPTION HANDLING 672

Exceptions in Java 673

Predefined Exception Classes 683

9.2 DEFINING yOUR OWN ExCEPTION CLASSES 685

9.3 MORE ABOUT ExCEPTION CLASSES 695

Declaring Exceptions (Passing the Buck) 695

Kinds of Exceptions 698

Errors 700

Multiple Throws and Catches 701

The finally Block 707

 contents xxxi

Rethrowing an Exception (Optional) 708

Case Study: A Line-Oriented Calculator 709

9.4 GRAPHICS SUPPLEMENT 721

Exceptions in GUIs 721

Programming Example: A JFrame GUI Using Exceptions 721

Chapter 10 Streams, File I/O, and Networking 739

10.1 AN OVERVIEW OF STREAMS AND FILE I/O 741

The Concept of a Stream 741

Why Use Files for I/O? 742

Text Files and Binary Files 742

10.2 TExT-FILE I/O 744

Creating a Text File 744

Appending to a Text File 750

Reading from a Text File 752

10.3 TECHNIQUES FOR ANy FILE 755

The Class File 755

Programming Example: Reading a File Name

 from the Keyboard 755

Using Path Names 757

Methods of the Class File 758

Defining a Method to Open a Stream 760

Case Study: Processing a Comma-Separated Values File 762

10.4 BASIC BINARy-FILE I/O 765

Creating a Binary File 765

Writing Primitive Values to a Binary File 767

Writing Strings to a Binary File 770

Some Details About writeUTF 771

Reading from a Binary File 772

The Class EOFException 778

Programming Example: Processing a File of Binary Data 780

10.5 BINARy-FILE I/O WITH OBJECTS AND ARRAyS 785

Binary-File I/O with Objects of a Class 785

Some Details of Serialization 789

Array Objects in Binary Files 790

xxxii contents

10.6 NETWORK COMMUNICATION WITH STREAMS 793

10.7 GRAPHICS SUPPLEMENT 799

Programming Example: A JFrame GUI for Manipulating Files 799

Chapter 11 Recursion 821

11.1 THE BASICS OF RECURSION 822

Case Study: Digits to Words 826

How Recursion Works 830

Infinite Recursion 834

Recursive Methods Versus Iterative Methods 836

Recursive Methods That Return a Value 838

11.2 PROGRAMMING WITH RECURSION 842

Programming Example: Insisting That User Input Be Correct 842

Case Study: Binary Search 844

Programming Example: Merge Sort—A Recursive Sorting Method 852

Chapter 12 Dynamic Data Structures and Generics 869

12.1 ARRAy-BASED DATA STRUCTURES 871

The Class ArrayList 872

Creating an Instance of ArrayList 872

Using the Methods of ArrayList 874

Programming Example: A To-Do List 878

Parameterized Classes and Generic Data Types 881

12.2 THE JAVA COLLECTIONS FRAMEWORK 881

The Collection Interface 881

The Class HashSet 882

The Map Interface 884

The Class HashMap 884

12.3 LINKED DATA STRUCTURES 887

The Class LinkedList 887

Linked Lists 888

Implementing the Operations of a Linked List 891

A Privacy Leak 898

Inner Classes 899

 contents xxxiii

Node Inner Classes 900

Iterators 900

The Java Iterator Interface 912

Exception Handling with Linked Lists 912

Variations on a Linked List 914

Other Linked Data Structures 916

12.4 GENERICS 917

The Basics 917

Programming Example: A Generic Linked List 920

APPENDICES

1 Getting Java 941

2 Running Applets 942

3 Protected and Package Modifiers 944

4 The DecimalFormat Class 945

Other Pattern Symbols 946

5 Javadoc 949

Commenting Classes for Use within javadoc 949

Running javadoc 950

6 Differences Between C++ and Java 952

Primitive Types 952

Strings 952

Flow of Control 952

Testing for Equality 953

main Method (Function) and Other Methods 953

Files and Including Files 953

Class and Method (Function) Definitions 954

No Pointer Types in Java 954

Method (Function) Parameters 954

Arrays 954

Garbage Collection 955

Other Comparisons 955

7 Unicode Character Codes 956

8 Introduction to Java 8 Functional Programming 957

INDEx 962

This page intentionally left blank

Introduction to
Computers and Java

1.1 coMpuTeR BaSicS 2
hardware and memory 3
Programs 6
Programming languages, compilers, and

Interpreters 7
Java Bytecode 9
class loader 11

1.2 a Sip oF JaVa 12
history of the Java language 12
applications and applets 13
a first Java application Program 14
writing, compiling, and running a Java

Program 19

1.3 pRogRaMMing BaSicS 21
object-oriented Programming 21
algorithms 25
testing and debugging 27
software reuse 28

1.4 gRaphicS SuppLeMenT 30
a sample graphics applet 30
size and Position of figures 32
drawing ovals and circles 34
drawing arcs 35
running an applet 37

1

chapter Summary 38
practice programs 41

programming projects 42
answers to Self-Test Questions 43

INTRODUCTION

This chapter gives you a brief overview of computer hardware and software. Much
of this introductory material applies to programming in any language, not just to
programming in Java. Our discussion of software will include a description of a
methodology for designing programs known as object-oriented programming.
Section 1.2 introduces the Java language and explains a sample Java program.

Section 1.4 is the first of a number of graphics supplements that end each
of the first ten chapters and provide an introduction to the graphics capabilities
of the Java language. These graphics supplements are interdependent, and each
one uses the Java topics presented in its chapter.

OBJECTIVES

After studying this chapter, you should be able to

•	Give	a	brief	overview	of	computer	hardware	and	software
•	Give	an	overview	of	the	Java	programming	language
•	Describe	 the	 basic	 techniques	 of	 program	design	 in	 general	 and	 object-

oriented programming in particular
•	Describe	applets	and	some	graphics	basics

PREREQUISITES

This first chapter does not assume that you have had any previous programming
experience, but it does assume that you have access to a computer. To get the
full value from the chapter, and from the rest of this book, you should have
a computer that has the Java language installed, so that you can try out what
you are learning. Appendix 1 describes how to obtain and install a free copy
of the Java language for your computer.

1.1 COMPUTER BASICS

The Analytical Engine has no pretensions whatever to originate anything. It
can do whatever we know how to order it to perform. It can follow analysis;
but it has no power of anticipating any analytical relations or truths. Its prov-
ince is to assist us in making available what we are already acquainted with.

—ADA AuGuSTA, Countess of Lovelace (1815–1852)

2

It is by no means hopeless to expect to make a machine for really very diffi-
cult mathematical problems. But you would have to proceed step-by-step.
I think electricity would be the best thing to rely on.

—Charles	sanDers	PeirCe	(1839–1914)

Computer systems consist of hardware and software. The hardware is the
physical machine. A set of instructions for the computer to carry out is called
a program. All the different kinds of programs used to give instructions to the
computer are collectively referred to as software.	in	this	book,	we	will	discuss	
software, but to understand software, it helps to know a few basic things
about computer hardware.

Hardware and Memory

Most computers available today have the same basic components, configured
in basically the same way. They all have input devices, such as a keyboard and
a mouse. They all have output devices, such as a display screen and a printer.
They also have several other basic components, usually housed in some sort
of cabinet, where they are not so obvious. These other components store data
and perform the actual computing.

The CPU, or central processing unit, or simply the processor, is the device
inside your computer that follows a program’s instructions. Currently, one of
the	better-known	processors	is	the	intel®Core™i7	processor.	The	processor	can	
carry out only very simple instructions, such as moving numbers or other data
from one place in memory to another and performing some basic arithmetic
operations like addition and subtraction. The power of a computer comes
from its speed and the intricacies of its programs. The basic design of the
hardware is conceptually simple.

A computer’s memory holds data for the computer to process, and it
holds the result of the computer’s intermediate calculations. Memory exists
in two basic forms, known as main memory and auxiliary memory. Main
memory holds the current program and much of the data that the program is
manipulating. You most need to be aware of the nature of the main memory
when you are writing programs. The information stored in main memory
typically is volatile, that is, it disappears when you shut down your computer.
in	contrast,	the	data	in	auxiliary memory, or secondary memory, exists even
when the computer’s power is off. All of the various kinds of disks—including
hard	 disk	 drives,	 flash	 drives,	 compact	 discs	 (CDs),	 and	 digital	 video	 discs	
(DVDs)	are	auxiliary	memory.

To make this more concrete, let’s look at an example. You might have
heard	 a	description	of	 a	personal	 computer	 (PC)	 as	having,	 say,	 1	 gigabyte	
of RAM and a 200-gigabyte hard drive. RAM—short for random access
memory—is the main memory, and the hard drive is the principal—but
not	 the	 only—form	 of	 auxiliary	memory.	 a	 byte	 is	 a	 quantity	 of	memory.	
So 1 gigabyte of RAM is approximately 1 billion bytes of memory, and a
200-gigabyte hard drive has approximately 200 billion bytes of memory.
What exactly is a byte? Read on.

The computer’s main memory consists of a long list of numbered bytes.
The number of a byte is called its address. A byte is the smallest addressable
unit of memory. A piece of data, such as a number or a keyboard character,

 1.1 Computer Basics 3

Hardware and
software make
up a computer
system

The CPU, or
central processing
unit, or processor,
performs the
instructions in a
program

Main memory is
volatile; auxiliary
memory is not

4 CHAPTeR 1 / Introduction to Computers and Java

can be stored in one of these bytes. When the computer needs to recover the
data later, it uses the address of the byte to find the data item.

A byte, by convention, contains eight digits, each of which is either 0 or 1.
Actually, any two values will do, but the two values are typically written as 0
and 1. Each of these digits is called a binary digit or, more typically, a bit.
A byte, then, contains eight bits of memory. Both main memory and auxiliary
memory are measured in bytes.

Data	of	various	kinds,	such	as	numbers,	letters,	and	strings	of	characters,	
is encoded as a series of 0s and 1s and placed in the computer’s memory. As
it turns out, one byte is just large enough to store a single keyboard character.
This is one of the reasons that a computer’s memory is divided into these
eight-bit bytes instead of into pieces of some other size. However, storing
either	a	string	of	characters	or	a	large	number	requires	more	than	a	single	byte.	
When the computer needs to store a piece of data that cannot fit into a single
byte, it uses several adjacent bytes. These adjacent bytes are then considered
to be a single, larger memory location, and the address of the first byte is
used as the address of the entire memory location. Figure 1.1 shows how a
typical computer’s main memory might be divided into memory locations.
The addresses of these larger locations are not fixed by the hardware but
depend on the program using the memory.

Main memory
consists of
addressable
eight-bit bytes

Groups of
adjacent bytes
can serve as a
single memory
location

FIGURE 1.1 Main Memory

2-byte memory location at address 3021

3-byte memory location at address 3024

2-byte memory location at address 3027

1-byte memory location at address 3023

11110000

11001100

00110001

11100001

10000001

10111100

01111111

11001110

10101010

01100011

10100010

3021

3022

3025

3026

3030

3031

3029

3024

3023

3027

3028

Bytes

Byte addresses

 1.1 Computer Basics 5

Recall that main memory holds the current program and much of its data.
Auxiliary memory is used to hold data in a more or less permanent form.
Auxiliary memory is also divided into bytes, but these bytes are grouped into
much larger units known as files. A file can contain almost any sort of data,
such as a program, an essay, a list of numbers, or a picture, each in an encoded
form. For example, when you write a Java program, you will store the program
in a file that will typically reside in some kind of disk storage. When you
use the program, the contents of the program file are copied from auxiliary
memory to main memory.

You name each file and can organize groups of files into directories, or
folders. Folder and directory are two names for the same thing. Some computer
systems use one name, and some use the other.

A file is a group
of bytes stored in
auxiliary memory

A directory, or
folder, contains
groups of files

faQ1 Why just 0s and 1s?

Computers use 0s and 1s because it is easy to make an electrical device
that has only two stable states. However, when you are programming,
you normally need not be concerned about the encoding of data as 0s
and 1s. You can program as if the computer directly stored numbers,
letters, or strings of characters in memory.
 There is nothing special about calling the states zero and one. We
could just as well use any two names, such as A and B or true and false.
The important thing is that the underlying physical device has two stable
states, such as on and off or high voltage and low voltage. Calling these
two states zero and one is simply a convention, but it’s one that is almost
universally followed.

1	FaQ	stands	for	“frequently	asked	question.”

reCap Bytes and memory locations

A computer’s main memory is divided into numbered units called bytes.
The number of a byte is called its address. Each byte can hold eight
binary digits, or bits, each of which is either 0 or 1. To store a piece of
data that is too large to fit into a single byte, the computer uses several
adjacent bytes. These adjacent bytes are thought of as a single, larger
memory location whose address is the address of the first of the adjacent
bytes.

6 CHAPTeR 1 / Introduction to Computers and Java

Programs

You probably have some idea of what a program is. You use programs all
the time. For example, text editors and word processors are programs. As we
mentioned earlier, a program is simply a set of instructions for a computer
to follow. When you give the computer a program and some data and tell
the computer to follow the instructions in the program, you are running, or
executing, the program on the data.

Figure 1.2 shows two ways to view the running of a program. To see the
first way, ignore the dashed lines and blue shading that form a box. What’s left
is	what	really	happens	when	you	run	a	program.	in	this	view,	the	computer	
has two kinds of input. The program is one kind of input; it contains the
instructions that the computer will follow. The other kind of input is the data
for	the	program.	it	is	the	information	that	the	computer	program	will	process.	
For example, if the program is a spelling-check program, the data would
be the text that needs to be checked. As far as the computer is concerned,
both the data and the program itself are input. The output is the result—or
results—produced	when	the	computer	 follows	the	program’s	 instructions.	 if	
the program checks the spelling of some text, the output might be a list of
words that are misspelled.

This first view of running a program is what really happens, but it is not
always the way we think about running a program. Another way is to think of
the	data	as	the	input	to	the	program.	in	this	second	view,	the	computer	and	
the program are considered to be one unit. Figure 1.2 illustrates this view by
surrounding	 the	 combined	program–computer	unit	with	 a	dashed	box	 and	
blue shading. When we take this view, we think of the data as input to the
program and the results as output from the program. Although the computer
is understood to be there, it is presumed just to be something that assists
the	program.	People	who	write	programs—that	 is,	programmers—find this
second view to be more useful when they design a program.

Your computer has more programs than you might think. Much of what
you	consider	to	be	“the	computer”	is	actually	a	program—that	is,	software—
rather than hardware. When you first turn on a computer, you are already

A program is a
set of computer
instructions

Figure 1.2 running a Program

Output

Program

Computer
Data (input for the

program)

 1.1 Computer Basics 7

running and interacting with a program. That program is called the operating
system. The operating system is a kind of supervisory program that oversees
the	entire	operation	of	the	computer.	if	you	want	to	run	a	program,	you	tell	
the operating system what you want to do. The operating system then retrieves
and starts the program. The program you run might be a text editor, a browser
to surf the World Wide Web, or some program that you wrote using the Java
language. You might tell the operating system to run the program by using
a mouse to click an icon, by choosing a menu item, or by typing in a simple
command.	Thus,	what	you	probably	think	of	as	“the	computer”	is	really	the	
operating system. Some common operating systems are Microsoft Windows,
apple’s	(Macintosh)	Mac	Os,	linux,	and	UniX.

An operating
system is a
program that
supervises a
computer’s
operation

faQ What exactly is software?

The word software simply means programs. Thus, a software company
is a company that produces programs. The software on your computer is
just the collection of programs on your computer.

Programming Languages, Compilers,
and Interpreters

Most modern programming languages are designed to be relatively easy for
people to understand and use. Such languages are called high-level languages.
Java is a high-level language. Most other familiar programming languages,
such	as	Visual	Basic,	C++,	C#,	COBOl,	Python,	and	ruby,	are	also	high-level	
languages.	Unfortunately,	computer	hardware	does	not	understand	high-level	
languages. Before a program written in a high-level language can be run, it
must be translated into a language that the computer can understand.

The language that the computer can directly understand is called machine
language. Assembly language is a symbolic form of machine language that
is easier for people to read. So assembly language is almost the same thing as
machine language, but it needs some minor additional translation before it
can run on the computer. Such languages are called low-level languages.

The translation of a program from a high-level language, like Java, to a low-
level language is performed entirely or in part by another program. For some
high-level languages, this translation is done as a separate step by a program
known as a compiler. So before you run a program written in a high-level
language, you must first run the compiler on the program. When you do this,
you are said to compile the program. After this step, you can run the resulting
machine-language program as often as you like without compiling it again.

The terminology here can get a bit confusing, because both the input
to the compiler program and the output from the compiler program are
programs. Everything in sight is a program of some kind or other. To help

Java is a high-
level language

Computers
execute a low-
level language
called machine
language

Compile once,
execute often

8 CHAPTeR 1 / Introduction to Computers and Java

avoid confusion, we call the input program, which in our case will be a
Java program, the source program, or source code. The machine-language
program that the compiler produces is often called the object program,
or object code. The word code here just means a program or a part of a
program.

Compilers
translate source
code into object
code

reCap Compiler

A compiler is a program that translates a program written in a high-level
language, such as Java, into a program in a simpler language that the
computer can more or less directly understand.

Some high-level languages are translated not by compilers but rather
by another kind of program called an interpreter. Like a compiler, an
interpreter translates program statements from a high-level language to a
low-level language. But unlike a compiler, an interpreter executes a portion
of code right after translating it, rather than translating the entire program at
once.	Using	an	interpreter	means	that	when	you	run	a	program,	translation	
alternates with execution. Moreover, translation is done each time you run
the program. Recall that compilation is done once, and the resulting object
program can be run over and over again without engaging the compiler
again. This implies that a compiled program generally runs faster than an
interpreted one.

Interpreters
translate and
execute portions
of code at a time

reCap interpreter

An interpreter is a program that alternates the translation and execution
of statements in a program written in a high-level language.

One disadvantage of the processes we just described for translating
programs written in most high-level programming languages is that you need
a different compiler or interpreter for each type of language or computer
system.	 if	 you	want	 to	 run	your	 source	program	on	 three	different	 types	of	
computer systems, you need to use three different compilers or interpreters.
Moreover, if a manufacturer produces an entirely new type of computer
system, a team of programmers must write a new compiler or interpreter
for that computer system. This is a problem, because these compilers and
interpreters are large programs that are expensive and time-consuming to
write.	Despite	this	cost,	many	high-level-language	compilers	and	interpreters	
work this way. Java, however, uses a slightly different and much more versatile

 1.1 Computer Basics 9

approach that combines a compiler and an interpreter. We describe Java’s
approach next.

Java Bytecode

The Java compiler does not translate your program into the machine language
for	 your	 particular	 computer.	 instead,	 it	 translates	 your	 Java	 program	 into	 a	
language called bytecode. Bytecode is not the machine language for any particular
computer.	instead,	bytecode	is	a	machine	language	for	a	hypothetical	computer	
known as a virtual machine. A virtual machine is not exactly like any particular
computer, but is similar to all typical computers. Translating a program written
in	bytecode	 into	 a	machine-language	program	 for	 an	actual	 computer	 is	quite	
easy. The program that does this translation is a kind of interpreter called the Java
Virtual Machine, or JVM.	The	JVM	translates	and	runs	the	Java	bytecode.

To run your Java program on your computer, you proceed as follows:
First, you use the compiler to translate your Java program into bytecode.
Then	you	use	the	particular	JVM	for	your	computer	system	to	translate	each	
bytecode instruction into machine language and to run the machine-language
instructions.	The	whole	process	is	shown	in	Figure	1.3.

Modern	 implementations	 of	 the	 JVM	 use	 a	 Just-in-Time	 (JiT),	 compiler.	
The	 JiT	 compiler	 reads	 the	bytecode	 in	 chunks	 and	 compiles	 entire	 chunks	 to	
native machine language instructions as needed. The compiled machine language
instructions are remembered for future use so a chunk needs to be compiled
only once. This model generally runs programs faster than the interpreter model,
which repeatedly translates the next bytecode instruction to machine code.

it	sounds	as	though	Java	bytecode	just	adds	an	extra	step	to	the	process.	
Why not write compilers that translate directly from Java to the machine
language for your particular computer system? That could be done, and it
is what is done for many other programming languages. Moreover, that
technique	 would	 produce	 machine-language	 programs	 that	 typically	 run	
faster. However, Java bytecode gives Java one important advantage, namely,
portability. After you compile your Java program into bytecode, you can run
that bytecode on any computer. When you run your program on another
computer, you do not need to recompile it. This means that you can send your
bytecode	over	the	internet	to	another	computer	and	have	it	run	easily	on	that	
computer regardless of the computer’s operating system. That is one of the
reasons	Java	is	good	for	internet	applications.

Portability	has	other	advantages	as	well.	When	a	manufacturer	produces	a	
new type of computer system, the creators of Java do not have to design a new
Java compiler. One Java compiler works on every computer. Of course, every
type	 of	 computer	 must	 have	 its	 own	 bytecode	 interpreter—the	 JVM—that	
translates bytecode instructions into machine-language instructions for that
particular computer, but these interpreters are simple programs compared to a
compiler.	Thus,	Java	can	be	added	to	a	new	computer	system	very	quickly	and	
very economically.

The JVM is an
interpreter
that translates
and executes
bytecode

A compiler
translates
Java code into
bytecode

Java bytecode
runs on any
computer that
has a JVM

